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Qbox-WEST coupling

Qbox is a massively parallel implementation of first-principles

molecular dynamics (FPMD) based on the plane-wave

pseudopotential formalism.

WEST is a massively parallel code for many body perturbation

theory calculations.

The coupling between Qbox and WEST relies on a finite-field approach to evaluate density

response functions (𝜒0, 𝜒RPA and 𝜒).

Most GW calculations are performed within the random phase approximation (RPA) where the exchange-

correlation kernel 𝑓xc is neglected in the density response function 𝜒. Based on finite-field calculations

performed by coupling Qbox and WEST, 𝜒 can be evaluated beyond the RPA in a straightforward manner.

The kernel 𝑓xc can be computed by inverting the Dyson equation connecting

𝜒0 and 𝜒. Semi-local and hybrid functionals are treated on an equal footing:

𝜒 = 𝜒0 + 𝜒0(𝑣c + 𝑓xc)𝜒 𝜒RPA = 𝜒0 + 𝜒0𝑣c𝜒

𝑓xc = 𝜒0
−1 − 𝜒−1 − 𝑣c

𝜒 = 𝜒0 + 𝜒0(𝑣c + 𝑓xc)𝜒

𝜒RPA = 𝜒0 + 𝜒0𝑣c𝜒

𝜒Γ = [𝑣c − 𝑣c𝜒0(𝑣c + 𝑓xc)]
−1−𝑣c
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Vertical ionization potential (VIP) and vertical electron affinity (VEA) for

molecules: GW100 set
Quasiparticle corrections for

the VBM and CBM of solids

We verified our BSE approach by computing the

singlet excitation energies (Δ) of the 28 molecules of

the Thiel’s set:

By utilizing compact representations of Kohn-Sham wavefunctions (bisection orbitals) as implemented in

the Qbox code, the computational cost of solving the BSE may be significantly reduced by neglecting pairs

of orbitals with small overlap.

Code features:

• Efficient hybrid DFT calculations using the recursive subspace

bisection (RSB) technique

• Simulation in arbitrary electric field

• Calculation of vibrational spectra (IR, Raman) and ionic

conductivity

• Calculation of thermal conductivity

Code features:

• Large-scale GW calculation without explicit calculation of

empty electronic states

• Low-rank decomposition of dielectric matrix

• Scalar-relativistic and full-relativistic calculations

• GW starting from semi-local and hybrid DFT

• GW with full frequency integration

First 2048 eigenvalues of the density response function for a Si147H100 nanoparticle.

WEST was coupled to

240 Qbox instances to

perform the calculation.

GW calculations beyond the RPA may be performed using

𝑓xc computed from coupling the Qbox and WEST codes:

The 𝑓xcmatrices for Ar, SiH4 and CO2 molecules in the space of 𝜒0
eigenpotentials:
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Eigenvalues of 𝜒 for Ar, SiH4 and CO2 molecules computed within and beyond the RPA:

Solution of the Bethe-Salpeter equation (BSE) provides valuable insight into the optical spectra of

molecules and solids. We developed an efficient approach to solve the BSE, based on the Liouville-Lanczos

algorithm and finite-field calculations. This approach avoids the explicit summation over empty electronic

states and altogether the calculation of the dielectric matrix. The screened Coulomb interaction W is

obtained from finite-field calculations, using the coupling between the Qbox and WEST codes.

Comparison between finite-field

and analytical evaluation of 𝑓xc at

the LDA level. Small mean relative

difference (𝛥𝑓𝑥𝑐 ) indicates a good

accuracy of the finite-field

approach adopted to compute 𝑓xc.

We developed a scheme to renormalize 𝑓xc to accelerate the convergence of 𝐺0𝑊0Γ0 calculations:

The eigenvalues of the renormalized

𝑓xc are larger than or equal to the

negative of the bare Coulomb

interaction, thus guaranteeing the

rapid convergence of 𝐺0𝑊0Γ0
quasiparticle energies.

Coupling the Qbox and WEST codes:

• WEST performs iterative diagonalization of response functions within

or beyond the random phase approximation.

• Qbox in client server mode serves as an efficient DFT engine

performing calculations in finite electric fields.

• The scheme is readily applicable to hybrid functional calculations.

• Orbital localization techniques implemented in Qbox reduce the

computational cost.

• The coupling can be performed in parallel, with WEST coupled

simultaneously with multiple copies of Qbox.
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𝑓xc, 𝜒Γ and quasiparticle energies for the SiH4 molecule and bulk Si.

By combining FPMD simulations with BSE and GW calculations, we computed the absorption spectra of ice

and water close to ambient conditions. In particular, we computed the imaginary part of the macroscopic

dielectric constant (𝐈𝐦[𝜺𝑴]) for water and ice by averaging over multiple snapshots of FPMD trajectories.
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Orbital overlap:

Good agreement is found between

GW-BSE and experiment both for

the relative energy positions and

intensities of the peaks over a

wide range of energy.
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Optical absorption spectra of the C60 molecule:

PBE400: www.quantum-
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2/index.htm
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