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Computational Framework

Ø In collaboration with experimentalists, we develop code 
validation protocols for aqueous systems. 

Ø We disseminate ab initio molecular dynamics (AIMD) 
trajectories for aqueous systems at: 
http://quantum-simulation.org/reference/index.htm  

Ø  Data and workflows of all papers available at: http://qresp.org/ 

Classical MD 

Vibrational: 
Raman 
IR, SFG 

Electronic excitations  
MBPT (GW & BSE) 

Electronic & 
thermal transport 

Electronic Structure  
Ab-initio MD and 

We	use	ab	initio	molecular	dynamics	to	study	the	
molecular	behavior	of	water	at	ambient	conditions,	under	
thermodynamic	extremes	and	at	interfaces:	

•  The	fundamental	behavior	of	liquid	water	at	ambient	conditions	
is	still	a	significant	challenge	to	understand	and	simulate	[i].		

	
•  High	pressure/temperature	conditions	exist	in	the	Earth’s	

mantle,	where	the	amount	of	water	stored	in	hydrous	minerals	
and	reservoirs/fluxes	may	be	much	greater	than	the	amount	in	
the	oceans	[ii][iii].	Water	mediates	critical	chemical	reactions	of	
the	deep	carbon	cycle,	with	consequence	for	global	carbon	
transport.		

	
•  Understanding	water	at	interfaces	is	essential	to	energy	

conversion	processes	such	as		photoelectrochemical	cell	and	
water	purification	technologies.	[iv].		
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High P/T Water: Structure and Diffusion

Vib. density of states is a poor 
approximation of Raman spectra 

Computed spectra reproduce major exp. trends 

collective 

High P/T Water: Ab Initio Raman/IR Spectroscopy

Riso(ω)∝
!ω
kT

dte−iωt α(0)α(t)∫

Raniso(ω)∝
!ω
kT

dte−iωt 2
15
Trβ(0)β(t)∫

B A 

C D 

D A B C 

A C B 

A C B 

D[H] = 9 x 10-5 cm2/s 
D[O] = 9 x 10-5 cm2/s 

Molecular Liquid 

Very low diffusion: 
 Solid  

D[H] = 3 x 10-5 cm2/s 
D[O] = 3 x 10-5 cm2/s 

“Ionic” Fluid 

Ø Snapshots of short-
lived, dissociative 
ionic species at 20 
GPa, 1000 K. Color 
coding is based on 
the O-H RDF cutoff 
distance.  

Ø Strong	evidence	of	pressure-induced	dissociation	in	O-H	
and	O-MLWF	radial	distribution	functions	 

Ø Considerable differences in diffusion at 
controversial P/T conditions  
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Fourier transform of dipole moment time 
correlation function is proportional to 

the IR spectrum: 

M are calculated from 
maximally localized 
Wannier functions 

High P/T Water: Ionic Conductivity and Dielectric Constant

-or- 

Ø Li+ causes LiOH formation, close 
solvation shells. 

Ø K+ and Cl- maintain large solvation shells 
under pressure 

H2O Oxygen 
structure: 
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Fourier transform of polarizability time 
correlation function is proportional to 

the Raman spectrum: 

Spectroscopic 
signatures of 

dissociating water: 
  

•  Present in IR but not 
in Raman spectra 

High-pressure amorphous ice may 
give liquid-like Raman signatures 

-	Inter	Signal:	Lower	frequency,	higher	intensity	in	OH	peak.		
-	Intra	Signal:	Higher	frequency,	lower	intensity	in	OH	peak	
-	Decrease	in	Raman	intensity	with	pressure	 

IR spectrum 

Raman Spectra 

Broad mid-IR continuum 
increases w/ pressure 

Electron Affinity of Ambient Water

Water at Interfaces 

Statistically Robust Analysis of AIMD trajectories of 
Aqueous Solutions
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•  Accurate estimate of the energies of occupied 
and empty states for water clusters 

  
•  EA of water surface (0.8 eV) is in agreement with 

the expt. of Stähler et al. (2015); value for bulk 
water is predicted to be 0.1-0.3 eV 

•  Presence of surface affects the position of CBM 
but not VBM; nuclear quantum effects are crucial 
for an accurate description of the electronic 
structure of water 
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DFT Mean absolute error 
(eV): 

Ø Electron affinity of liquid water has been unknown  

Ø Strategy: MB-Pol for bulk water and surface of water 
(with NQE); computed orbital energies along the 
molecular-dynamics trajectory using G0W0  starting 
with several DFT functionals 

Ø  Interfacial water essential 
to many emerging energy 
technologies: Al2O3/water 
interface studied with 
AIMD and experimental x-
ray reflectivity 
measurements 

 
 
Ø Bioengineering 

application: optB88 
functional to study 
interaction between water 
and Si 100 surface 

Ø  IR	spectrum	w/	DDH	is	blueshifted,	however	inclusion	
of	NQEs	may	bring	it	in	better	agreement	with	expt. 

Ø  A	previously	developed	dielectric	dependent	hybrid	
(DDH)	functional	has	been	applied	to	liquid	water 

Ø  DDH		accurately	
describes	the	
structural	
properties	of	
liquid	water. 

“Curation and Exploration of 
Reproducible Scientific Papers”  

6 Al2O3 layers, 96 H2O 
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1st Shell 2nd Shell Bulk 

Ø 10	independent	~50	ps	
trajectories	for	each	type	of	ion:		

Ø  Li+	→	Na+	→	K+	brings	larger,	
floppier	solvation	shells	with	
greater	exchange	of	H2O	

Ø  H-bond	density	
analysis	indicates	that	
Li+,	Na+,	or	K+	cannot	
be	identified	as	either		
“structure	maker”	or	
“breaker”	in	bulk	water	
(w/	PBE	model)	

Ø 32	independent	~58	ps	trajectories	
of	PBE	water	at	400K		

Ø Combining	all	trajectories	leads	to	
average	diffusion:	1.96	±	0.1	x10-5	
cm2/sec	

Effect of Ions?  

We computed ionic conductivity, σ, 
using the Green Kubo relation:  

Effect of Ions?  

Ø Order of magnitude 
increase in σ from 
11 to 20 GPa 

Ø Results in good 
agreement with 
experimental data 

Ø K+ and Cl- ions cause 
order of magnitude 
increase in ionic 
conductivity of water at 
11 GPa, 1000 K 

Ø Small enhancement 
of ε0 in presence of 
K+ cation 

The dielectric constant is 
computed as: 

Where M is the total dipole 
moment  

Ø  Developed 
validation protocol 
comparing x-ray 
reflectivity 
measurement to 
computed  
interfacial x-ray 
structure factors 
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Ø Focus	on	variability	
and	uncertainty	in	
common	averaged	
quantities		
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