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Molecular Dynamics

e An atomic-scale simulation method
- Compute the trajectories of all atoms
- extract statistical information from the trajectories

Atoms move according to
Newton’s law:

ml.Ri = Fl.
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Molecular dynamics: general
principles

e Integrate Newton’s equations of motion for N
atoms
mR.()=F®R,,..,R,) i=1...,.N
F(R,...R,)=-VER,,...R,)

l

« Compute statistical averages from time
averages (ergodicity hypothesis)

<A> fdr3N dp”" A(r,p)e " "P) = fA(t)dt

. Examples of A(¢): potential energy, pressure
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Simple energy model

e Model of the hydrogen molecule (H,): harmonic
oscillator

E(R,R,)=E(R,-R,|)
=a(R,-R,|-d,)’

e This model does not describe intermolecular
interactions
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Simple energy model

e Model of the hydrogen molecule including both
intra- and intermolecular interactions:

ER,...R )= Y E (R-R|+ > E,.(

{i,jyEM iIEM
JEM'

R -R))

e This model does not describe adequately
changes in chemical bonding
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Simple energy model

e Description of the reaction H,+H— H + H,

s . %

e.

e The model fails!
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What is a good energy model?

B

ay

[ 3
»

e 5
!‘ ’

UCDAVIS MICCoM

UNIVERSITY OF CALIFORNIA



Atomistic simulation of complex
structures

 Complex structures
- Nanoparticles
- Assemblies of nanoparticles
- Embedded nanoparticles
- Liquid/solid interfaces
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A difficult case: Structural
phase transitions in CO,

Molecular phases polymeric phase
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The energy is determined by
quantum mechanical properties

e First-Principles Molecular Dynamics: Derive
interatomic forces from quantum mechanics

Ni-tris(2-aminoethylamine)
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First-Principles Molecular Dynamics

Monte Carlo

Molecular Dynamics

Statistical
Mechanics

Electronic

Structure

Theory

Quantum Chemistry

Density Functional Theory

R. Car and M. Parrinello (1985)
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Electronic structure calculations

e Problem: determine the electronic properties
of an assembly of atoms using the laws of

quantum mechanics.
e Solution: solve the Schroedinger equation!
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The Schroedinger equation for N
electrons

e A partial differential equation for the wave
function :

r R’ Y EL(R")

., 0
zhgw(rl,...,rN,t) = H(r,,...,ry,1) Y(r,,...,ry,1)

« His the Hamiltonian operator:

H(r,... rN,t)———EV +V(r,...,ry,1)
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The time-independent
Schroedinger equation

 If the Hamiltonian is time-independent, we
have
iEt/h

Y(rx,,....,ry, D) =yY(r,....,ry) e

e where y(r) is the solution of the time-
independent Schroedinger equation:

H(r,...,ryu(r,...,ry) = ]T_'Zz//(rl,...,rN)

energy
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Solving the Schroedinger
equation

e The time-independent Schroedinger equation
can have many solutions:

H(r,...v, )y (r,...ry)=E ¢ (r,,....,r,) n=0,1,2...

e The ground state wave function vy, describes
the state of lowest energy E,

» Excited states are described by y,, ,,..and
have energies E,, E,,.. > E,
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Hamiltonian operator for N
electrons and M nuclei

o Approximation: treat nuclei as classical particles
* Nuclei are located at positions R, , electrons at r,

B V2 _ J €
2me§ | ZZ ri_RJ +i2jrl rj‘
+§ If%jlcf. +%§1MZR,2
i<j | j i=
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The adiabatic approximation

e The Hamiltonian describing an assembly of
atoms is time-dependent because atoms move:
2

H(r,t)=—% Vi2+V(r,f)

V(,0) = 3 Vi, (7 = Ry (0) 4V, ()

time-dependence

through ionic positions
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The adiabatic approximation

e If ions move sufficiently slowly, we can assume
that electrons remain in the electronic ground

state at all times

?/J(l‘,t) = 7;”0(1')

H(r, R, ()}, (r) = Egp,y(r)

/

Ground state energy

Ground state

wave function
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Mean-field approximation

e The problem of solving the N-electron Schroedinger equation is
formidable (N! complexity).

H,...,v,) ¥ (x,...ry)=E @ (I,....,fy)

- Wave functions must be antisymmetric (Pauli principle)

w(rl,...,rl.,...,rj,...,rN) = —z/J(rl,...,rj,...,rl.,...,rN)

T T

exchanged

o Assuming that electrons are independent (i.e. feel the same
potential) reduces this complexity dramatically.

- The potential is approximated by an average effective potential
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Independent particles, solutions
are Slater determinants

e A Slater determinant is a simple form of
antisymmetric wave function :

z/j(rlw--arN) = det{%(rj)}
« The one-particle wave functions ¢, satisfy the
one-particle Schroedinger equation:

h(r)¢i (l‘) =&, (l‘)

2

h(r) = ———V* +V . (r)
2m t

Note: effective potential
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Electron-electron interaction

H(rl,.. IR, R, =

I SV

I j=I

ZZe
+E‘R e ‘+22MR2
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Density Functional Theory

e Introduced by Hohenberg & Kohn (1964)
e Chemistry Nobel prize to W.Kohn (1999)

e The electronic density is the fundamental
quantity from which all electronic properties
can be derived F — E[p]

E[p]=T[p]+ [V)pr)dr+E [ p]

e Problem: the functional E[p] is unknown!
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The Local Density
Approximation

 Kohn & Sham (1965)
E[p]=T[p]+ [V)pr)dr+E [ p]

e Approximations:

- The kinetic energy is that of a non-interacting electron gas of
same density

- The exchange-correlation energy density depends locally on the
electronic density

E, =E,[p(M)]= [&.(p(r)p(r)dr
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The Local Density
Approximation

e The mean-field approximation is sometimes not
accurate, in particular for

- strongly correlated electrons
- excited state properties
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The Kohn-Sham equations

e Coupled, non-linear, integro-differential
equations:

(A, +V(0,r)p, = £, i—1...Nel

V(p,r)=V,,(r)+ f ) dx' + Vi (p(r), V()

r-r]

o(r) = E|¢i ol

[¢:@0)¢,(r)dr =5,
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Numerical methods

e Basis sets: solutions are expanded on a basis of
N orthogonal functions

¢,(r)= Ecij @; ()

J

[o;0)g,(r)=6, QCK
Q

e The solution of the Schroedinger equation
reduces to a linear algebra problem
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Numerical methods: choice of
basis

e Gaussian basis (non-orthogonal)

@, (r)=e I
e Plane wave basis (orthogonal)

@, (r) ="

e Other representations of solutions:
- values on a grid
- finite element basis
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Numerical methods: choice of
basis

e Hamiltonian matrix:

H, =<q0i‘H‘cpj>=fqpf(r) Ho,(r)d'r

e Schroedinger equation: an algebraic eigenvalue
problem

He =¢.c c eC”
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Numerical methods: choice of
basis

e Non-orthogonal basis sets lead to generalized
eigenvalue problems

S, =(¢|¢,)= [¢" (1) ¢,(r) d’r =5,

He =¢Se,. ¢, €C"
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Solving large eigenvalue
problems

UNIVERSITY O
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The size of the matrix H often exceeds 103-104
Direct diagonalization methods cannot be used

Iterative methods:

- Lanczos type methods

- subspace iteration methods

Many algorithms focus on one (or a few)
eigenpairs

Electronic structure calculations involve many
eigenpairs (~ # of electrons)

robust methods are necessary
MICCoM



Solving the Kohn-Sham
equations: fixed-point iterations

e The Hamiltonian depends on the electronic
density

(—AQ, +V(0,1)p. = &0 i—l...Nel

V(p,r)=V,, @)+ f L dr' + Vi (p(r), V(1)

r-r]

p(r) = 2|¢l- o)

[¢:@)¢,(r)dr =5,
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Self-consistent iterations

e For k=1,2,...
- Compute the density p,
- Solve the Kohn-Sham equations

e The iteration may converge to a fixed point
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Simplifying the electron-ion
interactions: Pseudopotentials

e The electron-ion interaction is singular
Ze’
r-R
e Only valence electrons play an important role
in chemical bonding

‘/e—ion (r) ==

core electrons

Valence electrons
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Simplifying the electron-ion
interactions: Pseudopotentials

e The electron-ion potential can be replaced by a
smooth function near the atomic core

_2&2
‘/e—ion (r) = ‘r - R‘
\f(‘r—R‘) r-R|<r,

‘r—R‘>rC

ut

ut

e Core electrons are not included in the
calculation (they are assumed to be "frozen")
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Pseudopotentials: Silicon

e Solutions of the Schroedinger equation for Si
including all electrons (core+valence):

B
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Pseudopotentials: Silicon

e Solutions of the Schroedinger equation for Si
including all electrons (zoom on core region):
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Pseudopotentials: Silicon

e The electron-ion potential can be replaced by a
smooth function near the atomic core

—| xyShow | - | _ —| xyShow | - | _
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Summary: First-principles
electronic structure

e Time-independent Schroedinger equation
e Mean-field approximation

e Simplified electron-electron interaction:

- Density Functional Theory, Local Density
Approximation

o Simplified electron-ion interaction:
- Pseudopotentials
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Molecular dynamics:
Computation of ionic forces

e Hamiltonian: H(A)

e Hellman-Feynman theorem: if y,(A) is the
electronic ground state of H(A)

ok
aAl, oA
« For ionic forces: A=R;(ionic positions)

9 W HM |y (W) = (3, (A )‘aH (A)

¥, (A))
A

E=———<wo\ \wo> <%\—E on (=R

MICCoM
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Integrating the equations of
motion: the Verlet algorithm

e The equations of motion are coupled, second
order ordinary differential equations

e Any ODE integration method can be used
e Time-reversible integrators are preferred

e The Verlet algorithm (or leapfrog method) is

time-reversible
2

x(t+At)=2x(t)-x(t+At)+ A F(x(2))
m
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Integrating the equations of
motion: the Verlet algorithm

e Derivation of the Verlet algorithm: Taylor
expansion of x(t)

dc At° d’x Ar d’x A
xX(t+At)=x(t)+ At —+ + + O(At
( )= (1) dt 2 d* 6 df (A7)
dc At d°x A d’x 4
x(t=At)=x(t)-At—+ — + O(At
( )= x(0) dt 2 d* 6 dt (A7)

e Add the two Taylor expansions:

2

x(t+ A1) +x(t - A) =2x(¢) + At % +O(At)
l
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Integrating the equations of
motion: the Verlet algorithm

e uUse Newton’s law

md—;=f(x(t))

2
x(t+ A +x(t—At) =2x(1) + AL’ dx, O(At*)
dt’

2

x(t+A8)=2x(t)-x(t - At) + A F(x(2))+O(At")
m
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First-Principles Molecular Dynamics

Molecular Dynamics Density Functional Theory
I ¥
d2 (—A+I/eff)(pi(X)=8i(pi(X)
m—R, =F FPMD i 2
dt =
p(x)= 2w, ()|
1\ i=1

Newton equations Kohn-Sham equations

R. Car and M. Parrinello (1985) MlccoM 44



FPMD: the Recipe

e Choose a starting geometry: atomic positions
e Choose an exchange-correlation functional
e Choose appropriate pseudopotentials

e Run!
e Publish!!
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FPMD: the Recipe

e Choose a starting geometry: atomic positions
e Choose an exchange-correlation functional
e Choose appropriate pseudopotentials

e Run!
e P I
e Test!
- Test sensitivity to starting geometry, finite size effects
Test sensitivity to duration of the simulation
Test accuracy of the basis set

Test choice of exchange-correlation functioll\}iallscc M
wmmoraworpest accuracy of pseudopotentials OfF 4




First-Principles Molecular
Dynamics applications

e Solid state physics

e Surface physics

e Nanotechnology

o High pressure physics

e Chemical Physics

e Biochemistry

e Mechanisms of drug action
e Solvation processes

The absence of empirical parameters makes this
approach widely applicable and predictive.
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Nanoparticles

o Exploration of multiple locally
stable structures

« Electronic properties at finite
temperature

Cds,Ses,
UCDAVIS MICCoM ..
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Embedded nanoparticles,
assemblies of nanoparticles

« Annealing of structures at
finite temperature

« Calculation of band gaps and
band alignments

Si/ZnS

S. Wippermann, M. Voros, A. Gali, F. Gygi, G. Zimanyi, G.Galli,
UCDAVIS Phys. Rev. Lett. 112, 106801 (2014) . MICCoM




Liquids and Liquid-Solid Interfaces

H,0/Si(100)H

UCDAVIS

UNIVERSITY OF CALIFORNIA

e Structure of water at the
interface

e Electronic structure

- band alignhment of bulk solid
and liquid

e Spectroscopy
- IR and Raman spectra

Mi CCOM 50



Liquid-solid interfaces

« Water on oxide surfaces
e« H,0/WO,

e Simulation of

surface relaxation and
dynamics

structure of defects
electronic structure

spectroscopic signature of
water at the interface

UNIVERSITY OF CALIFORNIA
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Electronic properties:
Polarization

e The electronic polarization (per unit cell) of an

infinite DGHOdlC system is ill- cefmed e & o
1 ol O 0O O

_ OLLO 0Ol 10

= ol eEZR +frp(r) dr o To o lo

O O O O

- P depends on the choice of origin

e The change in polarization caused by a small
perturbation is well defined

e The electric current caused by a perturbation

(e.g. a deformation) can be computed

R. Resta, Rev. Mod. Phys. 66, 899 (1994). MICC OM
52



Electronic properties:
Polarization

e The electronic polarization (per unit cell) of an
infinite periodic system is ill-defined,

|
=§__82

- P depends on the choice of origin

e The change in polarization caused by a small
perturbation is well defined

e The electric current caused by a perturbation

(e.g. a deformation) can be computed
R. Resta, Rev. Mod. Phys. 66, 899 (1994).

r)dr

O OO O
O|O P|O P
O|O PO|O P
CNONORONG
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Wannier functions

e A set of localized orbitals that span the same
subspace as the Kohn-Sham eigenvectors

L > 2
e minimize the spread O =<¢‘(x—<¢‘x‘¢>) ‘gb>
e Wannier centers: centers of charge of each
Wannier function

e Polarization can be expressed in terms of the
centers 1 7
=—|-eYZR +e rw (r)dr

N. Marzari, A. Mostofi, J. Yates, |. Souza and D. Vanderbilt, Rev. Mod.
Phys. 84, 1419 (2012). MICCoM ..
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Time-dependent polarization of

nanoparticles
e PBE DFT MD 300K

i

|

e dt=1.9 fs
2 T
1.5 F
1..
0,5
0 A all
=
P
= -0,5
i)
El
=] -1}
-1.5F
_2.
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12 Debye
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IR Spectroscopy

e IR spectra during MD simulations
e Autocorrelation function of P(t)

o)l (Zrorrop
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Raman Spectroscopy

e Compute the polarizability at each MD step

- Use Density Functional Perturbation Theory (Baroni,
Giannozzi, Testa, 1987)

- Use a finite-difference formula with P(t) and finite
field

M CCOM 57



On-the-fly Computation of
Raman spectra

E Isotropic

; _ Cle. (D20)64 « Position of O-D stretching

E — exptl 283K band: PBE functional yields a

Z eXpté ;(9)§§ red shifted peak, compared
g| T expt to expt.

e e

_ T * Low frequency bands:

g Anisotropic satisfactory agreement with
: expt.

£ expt3 278K H,0 P

2| — e 308KH O - Peak Intensities in good

£ agreement with expt.

£ f\,\\' g P

T 1 1 1 I T T 1
0 500 1000 1500 2000 2500 %000
Wavenumber [cm ]

Q. Wan, L. Spanu, G. Galli, F. Gygi, JCTC 9, 4124 (2013)
MICCoM
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Solving the Kohn-Sham equations in a
finite electric field

e In finite systems: add a linear potential
2

H. =Y +V(r)-eEx
2m

e The spectrum is not bounded below (no "ground
state’)

e In periodic systems: define the electric
enthalpy:

Flp]=Ex[¢|-QP[¢] E
|. Souza, J. Iniguez, D. Vanderbilt, Phys. Rev. Lett. 89, 117602 (2002).
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51(100):H-H20 interface

DFT MD of the Si/H20 interface under finite field

51(100)-(3x3):H-H20, canted dihydride surface
termination, 116 water molecules

Analysis of time-dependent polarization
Comparison with IR spectra

L. Yang, F. Niu, S. Tecklenburg, M. Pander, S. Nayak, A. Erbe,
i S. Wippermann, F. Gygi, G. Galli
UCDAvIS ° PP e MICCoM
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Validation of DFT: PBE vs PBEO vs ...

e Oxygen-oxygen pair correlation function in (H,0)

32

4
————— PBE (439:29K) 1 :
————— PBE (367+25K) . -
PBEO (438+29K) —~ ° B
PBEO (374+27K) 82~ ~

1))

Exp (300K) i B
-] :
0 i T l

2

N

r(A)

C.Zhang, D.Donadio, F.Gygi, G.Galli, JCTC 7, 1443 (2011) bM 61
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Is my simulation reproducible?

e D,0 Power spectrum of ionic velocities (32 x 10 ps runs)

0.25 g g g

0.2

0.15

o
—

intensity (arb. units)

0.05

! ! : Paaass S S
O | | | | -

2000 2200 2400 2600 2800 3000
frequency(cm'1)
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Validating/comparing levels of
theory

Need for (quantitative) statistical analysis
- compute confidence intervals

An accurate determination of structural and electronic
properties requires multiple uncorrelated simulations

Autocorrelation times may vary for different quantities
Example: the PBE400 dataset

- First-principles MD simulations of water
- http://www.quantum-simulation.org/reference/h20/pbe400
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Summary

e Basic features of FPMD

e Approximations of electronic structure
calculations

e Extensions: polarization, finite electric
field

e Applications

Next FPMD steps:
* Today 1:45 pm: Qbox tutorial

 Tomorrow 1:30 pm: Qbox hands-on exercises
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