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Outline 

•  Molecular dynamics simulations  
•  Electronic structure calculations 
•  First-Principles Molecular Dynamics (FPMD) 
•  Applications 
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Molecular Dynamics 

•  An atomic-scale simulation method 
–  Compute the trajectories of all atoms 
–  extract statistical information from the trajectories 

Atoms move according to 
Newton’s law:

mi !!R i = Fi



Molecular dynamics: general 
principles 
•  Integrate Newton’s equations of motion for N 

atoms 

•  Compute statistical averages from time 
averages (ergodicity hypothesis) 

•  Examples of A(t): potential energy, pressure, … 

mi
!!Ri (t) = Fi (R1,…,RN ) i =1,…,N
Fi (R1,…,RN ) = −∇iE(R1,…,RN )

A = dr3N dp3NA(r,p)e−βH (r,p) ≅
Ω

∫ 1
T

A(t)dt
0

T

∫



Simple energy model 

•  Model of the hydrogen molecule (H2): harmonic 
oscillator 

•  This model does not describe intermolecular 
interactions 

E(R1,R2 ) = E(R1 −R2 )

=α(R1 −R2 − d0 )
2



Simple energy model 

•  Model of the hydrogen molecule including both 
intra- and intermolecular interactions: 

 
•  This model does not describe adequately 

changes in chemical bonding 

E(R1,…,RN ) = Eintra (Ri −R j )
{i, j}∈M
∑ + Einter (Ri −R j )

i∈M
j∈M '

∑



Simple energy model 

•  Description of the reaction H2+H→ H + H2 

•  The model fails! 



What is a good energy model? 



Atomistic simulation of complex 
structures 

•  Complex structures 
–  Nanoparticles 
–  Assemblies of nanoparticles 
–  Embedded nanoparticles 
–  Liquid/solid interfaces 
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A difficult case: Structural 
phase transitions in CO2 

Molecular phases polymeric phase 



The energy is determined by 
quantum mechanical properties 
•  First-Principles Molecular Dynamics: Derive 

interatomic forces from quantum mechanics 

Ni-tris(2-aminoethylamine) 



First-Principles Molecular Dynamics 

Statistical 
Mechanics 

Electronic 
Structure 
Theory 

Quantum Chemistry 

Density Functional Theory 

… 

Monte Carlo  

Molecular Dynamics 

… 

FPMD 

12 R. Car and M. Parrinello (1985) 



Electronic structure calculations 

•  Problem: determine the electronic properties 
of an assembly of atoms using the laws of 
quantum mechanics. 

•  Solution: solve the Schroedinger equation! 



The Schroedinger equation for N 
electrons 
•  A partial differential equation for the wave 

function ψ:

•  H is the Hamiltonian operator: 

ri ∈ R3, ψ ∈ L2 (R3N )

i! ∂
∂t
ψ(r1,…,rN , t) = H (r1,…,rN , t)ψ(r1,…,rN , t)
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The time-independent 
Schroedinger equation 
•  If the Hamiltonian is time-independent, we 

have 

 
•  where ψ(r) is the solution of the time-

independent Schroedinger equation: 

ψ(r1,…,rN , t) =ψ(r1,…,rN ) e
iEt/!

),,(),,(),,( 111 NNN EH rrrrrr ……… ψψ =

energy 



Solving the Schroedinger 
equation 
•  The time-independent Schroedinger equation 

can have many solutions:

 
•  The ground state wave function ψ0 describes 

the state of lowest energy Ε0

•  Excited states are described by ψ1,  ψ2,.. and 
have energies Ε1, Ε2,.. > Ε0

H (r1,…,rN )ψn (r1,…,rN ) = Enψn (r1,…,rN ) n = 0,1, 2…



Hamiltonian operator for N 
electrons and M nuclei 
•  Approximation: treat nuclei as classical particles 
•  Nuclei are located at positions Ri , electrons at ri 

H (r1,…,rN ,R1,…,RM ) =

−
!2

2me

∇i
2

i=1

N

∑ −
Z je

2

ri −R j

+
e2

ri − rji< j

N

∑
j=1

M

∑
i=1

N

∑

+
ZiZ je

2

Ri −R ji< j

M

∑ +
1
2

Mi
i=1

M

∑ !Ri
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The adiabatic approximation 

•  The Hamiltonian describing an assembly of 
atoms is time-dependent because atoms move: 
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time-dependence 

through ionic positions 



The adiabatic approximation 

•  If ions move sufficiently slowly, we can assume 
that electrons remain in the electronic ground 
state at all times 
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Ground state energy Ground state 

wave function 



Mean-field approximation 

•  The problem of solving the N-electron Schroedinger equation is 
formidable (N! complexity). 

–  Wave functions must be antisymmetric (Pauli principle) 

•  Assuming that electrons are independent (i.e. feel the same 
potential) reduces this complexity dramatically. 
–  The potential is approximated by an average effective potential 

),,,,,,(),,,,,,( 11 NijNji rrrrrrrr ……………… ψψ −=

exchanged 

),,(),,(),,( 111 NnnNnN EH rrrrrr ……… ψψ =



Independent particles, solutions 
are Slater determinants 
•  A Slater determinant is a simple form of 

antisymmetric wave function : 
 
•  The one-particle wave functions ϕi satisfy the 

one-particle Schroedinger equation: 

)}(det{),,( 1 jiN rrr ϕψ =…
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Electron-electron interaction 

H (r1,…,rN ,R1,…,RM ) =

−
!2

2me

∇i
2

i=1

N

∑ −
Z je

2

ri −R j

+
e2

ri − rji< j
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∑
j=1

M

∑
i=1

N

∑

+
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∑ +
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Density Functional Theory 

•  Introduced by Hohenberg & Kohn (1964) 
•  Chemistry Nobel prize to W.Kohn (1999) 
•  The electronic density is the fundamental 

quantity from which all electronic properties 
can be derived 

 

•  Problem: the functional E[ρ] is unknown! 

E = E ρ[ ]

E ρ[ ] = T ρ[ ]+ V∫ (r)ρ(r)dr+Exc ρ[ ]



The Local Density 
Approximation 
•  Kohn & Sham (1965) 

•  Approximations: 
–  The kinetic energy is that of a non-interacting electron gas of 

same density 
–  The exchange-correlation energy density depends locally on the 

electronic density 

Exc = Exc ρ(r)[ ] = εxc∫ (ρ(r))ρ(r)dr

E ρ[ ] = T ρ[ ]+ V∫ (r)ρ(r)dr+Exc ρ[ ]



The Local Density 
Approximation 

•  The mean-field approximation is sometimes not 
accurate, in particular for 
–  strongly correlated electrons 
–  excited state properties 

Ve-e =
ρ( !r )
r− !r

d !r +VXC(ρ(r))∫



The Kohn-Sham equations 

•  Coupled, non-linear, integro-differential 
equations: 

−Δφi +V (ρ,r)φi = εiφi i =1…Nel

V (ρ,r) =Vion (r)+
ρ( #r )
r− #r

d #r +VXC(ρ(r),∇ρ(r))∫

ρ(r) = φi (r)
2

i=1

Nel

∑

φ
i

∗(r)φ j (r)dr = δij∫

(

)

*
*
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+

*
*
*
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Numerical methods 

•  Basis sets: solutions are expanded on a basis of 
N orthogonal functions 

•  The solution of the Schroedinger equation 
reduces to a linear algebra problem 

φi (r) = cij
j=1

N

∑ ϕ j (r)

ϕ j
∗(r)ϕk (r)

Ω

∫ = δ jk Ω⊂ R3



Numerical methods: choice of 
basis 
•  Gaussian basis (non-orthogonal) 

•  Plane wave basis (orthogonal) 
 

•  Other representations of solutions: 
–  values on a grid 
–  finite element basis 

ϕi (r) = e
−αi r−R

2

ϕq (r) = e
iq⋅R



Numerical methods: choice of 
basis 
•  Hamiltonian matrix: 

•  Schroedinger equation: an algebraic eigenvalue 
problem 

Hij = ϕi H ϕ j = ϕi
∗(r)Hϕ j (r)

Ω

∫ d3r

Hcn = εncn cn ∈C
N



Numerical methods: choice of 
basis 
•  Non-orthogonal basis sets lead to generalized 

eigenvalue problems 

ijjijiij dS δφφφφ ≠== ∫
Ω

∗ rrr 3)()(

Hcn = εnScn cn ∈C
N



Solving large eigenvalue 
problems 
•  The size of the matrix H often exceeds 103-104 
•  Direct diagonalization methods cannot be used 
•  Iterative methods: 

–  Lanczos type methods 
–  subspace iteration methods 

•  Many algorithms focus on one (or a few) 
eigenpairs 

•  Electronic structure calculations involve many 
eigenpairs (~ # of electrons) 

•  robust methods are necessary 



−Δφi +V (ρ,r)φi = εiφi i =1…Nel

V (ρ,r) =Vion (r)+
ρ( #r )
r− #r

d #r +VXC(ρ(r),∇ρ(r))∫

ρ(r) = φi (r)
2

i=1

Nel

∑

φ
i

∗(r)φ j (r)dr = δij∫

(

)

*
*
**

+

*
*
*
*

Solving the Kohn-Sham 
equations: fixed-point iterations 
•  The Hamiltonian depends on the electronic 

density 



Self-consistent iterations 

•  For k=1,2,… 
–  Compute the density ρk 

–  Solve the Kohn-Sham equations 

•  The iteration may converge to a fixed point



Simplifying the electron-ion 
interactions: Pseudopotentials 
•  The electron-ion interaction is singular 

 
•  Only valence electrons play an important role 

in chemical bonding 

Ve-ion (r) = −
Ze2

r−R

Valence electrons 

core electrons 



Simplifying the electron-ion 
interactions: Pseudopotentials 
•  The electron-ion potential can be replaced by a 

smooth function near the atomic core 

 
•  Core electrons are not included in the 

calculation (they are assumed to be "frozen") 

Ve-ion (r) =
−
Ze2

r−R
r−R > rcut

f ( r−R ) r−R < rcut

"

#
$

%
$



Pseudopotentials: Silicon 

•  Solutions of the Schroedinger equation for Si 
including all electrons (core+valence): 

Potential = -Z/r 

ψ3s

wavefunctions 

ψ3p

Core Valence 



Pseudopotentials: Silicon 

•  Solutions of the Schroedinger equation for Si 
including all electrons (zoom on core region): 

Potential = -Z/r 

rψ2s 

rψ2p 

rψ1s

Core region 



Pseudopotentials: Silicon 

•  The electron-ion potential can be replaced by a 
smooth function near the atomic core 

-Z/r 

ψ3s

wavefunctions 

ψ3p

Core Valence 

pseudopotentials 



Summary: First-principles 
electronic structure 

•  Time-independent Schroedinger equation 
•  Mean-field approximation 
•  Simplified electron-electron interaction: 

–  Density Functional Theory, Local Density 
Approximation 

•  Simplified electron-ion interaction: 
–  Pseudopotentials 



•  Hamiltonian: H(λ)  
•  Hellman-Feynman theorem: if ψ0(λ) is the 

electronic ground state of H(λ)  

 
•  For ionic forces: λ=Ri (ionic positions) 

Molecular dynamics: 
Computation of ionic forces 

∂E
∂λ λ0

=
∂
∂λ

ψ0 (λ) H (λ) ψ0 (λ) = ψ0 (λ0 )
∂H (λ)
∂λ λ0

ψ0 (λ0 )

Fi = −
∂E
∂Ri

= ψ0
∂H
∂Ri

ψ0 = ψ0
∂
∂Ri

Ve-ion (r − Rj )
j
∑ ψ0



Integrating the equations of 
motion: the Verlet algorithm 
•  The equations of motion are coupled, second 

order ordinary differential equations 
•  Any ODE integration method can be used 
•  Time-reversible integrators are preferred 
•  The Verlet algorithm (or leapfrog method) is 

time-reversible 

x(t +Δt) = 2x(t)− x(t +Δt)+ Δt
2

m
F (x(t))



Integrating the equations of 
motion: the Verlet algorithm 
•  Derivation of the Verlet algorithm: Taylor 

expansion of  x(t) 

 
•  Add the two Taylor expansions: 

x(t +Δt) = x(t)+Δt dx
dt
+
Δt2

2
d 2x
dt2

+
Δt3

6
d 3x
dt3

+O(Δt4 )

x(t −Δt) = x(t)−Δt dx
dt
+
Δt2

2
d 2x
dt2

−
Δt3

6
d 3x
dt3

+O(Δt4 )

x(t +Δt)+ x(t −Δt) = 2x(t)+Δt2 d
2x
dt2

+O(Δt4 )



Integrating the equations of 
motion: the Verlet algorithm 
•  use Newton’s law 

md
2x
dt2

= f (x(t))

x(t +Δt)+ x(t −Δt) = 2x(t)+Δt2 d
2x
dt2

+O(Δt4 )

x(t +Δt) = 2x(t)− x(t −Δt)+ Δt
2

m
F (x(t))+O(Δt4 )



First-Principles Molecular Dynamics 

Density Functional Theory Molecular Dynamics 

 

                           mi
d 2

dt2
R i = Fi

−Δ+Veff( )ϕi (x) = εiϕi (x)

ρ x( ) = ϕi (x)
2

i=1

n

∑

Kohn-Sham equations Newton equations 

FPMD 

R. Car and M. Parrinello (1985) 44 



FPMD: the Recipe 

45 

•  Choose a starting geometry: atomic positions 
•  Choose an exchange-correlation functional 
•  Choose appropriate pseudopotentials 
•  Run! 
•  Publish!! 



FPMD: the Recipe 

46 

•  Choose a starting geometry: atomic positions 
•  Choose an exchange-correlation functional 
•  Choose appropriate pseudopotentials 
•  Run! 
•  Publish!! 
•  Test!  

–  Test sensitivity to starting geometry, finite size effects 
–  Test sensitivity to duration of the simulation 
–  Test accuracy of the basis set 
–  Test choice of exchange-correlation functionals 
–  Test accuracy of pseudopotentials 
–  … 



•  Solid state physics 
•  Surface physics 
•  Nanotechnology 
•  High pressure physics 
•  Chemical Physics 
•  Biochemistry 
•  Mechanisms of drug action 
•  Solvation processes 

First-Principles Molecular 
Dynamics applications 

The absence of empirical parameters makes this 
approach widely applicable and predictive. 



Nanoparticles 

•  Exploration of multiple locally 
stable structures  

•  Electronic properties at finite 
temperature 

48 

Cd34Se34 



•  Annealing of structures  at 
finite temperature 

•  Calculation of band gaps and 
band alignments 

S. Wippermann, M. Vörös, A. Gali, F. Gygi, G. Zimanyi, G.Galli, 

Phys. Rev. Lett. 112, 106801 (2014) . 

Si/ZnS 

Liquids and Liquid-Solid Interfaces Embedded nanoparticles, 
assemblies of nanoparticles 



Liquids and Liquid-Solid Interfaces 

•  Structure of water at the 
interface 

•  Electronic structure 
–  band alignment of bulk solid 

and liquid   
•  Spectroscopy 

–  IR and Raman spectra 

H2O/Si(100)H 

50 



Liquid-solid interfaces 

•  Water on oxide surfaces 
•  H2O/WO3 
 

•  Simulation of  
–  surface relaxation and 

dynamics  
–  structure of defects 
–  electronic structure 
–  spectroscopic signature of 

water at the interface 

H2O/WO3 51 



Electronic properties: 
Polarization 
•  The electronic polarization (per unit cell) of an 

infinite periodic system is ill-defined 

–  P depends on the choice of origin 

•  The change in polarization caused by a small 
perturbation is well defined 

•  The electric current caused by a perturbation 
(e.g. a deformation) can be computed 

52 
R. Resta, Rev. Mod. Phys. 66, 899 (1994). 

P = 1
Ω

−e ZlRl + rρ(r) dr∫
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Electronic properties: 
Polarization 
•  The electronic polarization (per unit cell) of an 

infinite periodic system is ill-defined 

–  P depends on the choice of origin 

•  The change in polarization caused by a small 
perturbation is well defined 

•  The electric current caused by a perturbation 
(e.g. a deformation) can be computed 

53 
R. Resta, Rev. Mod. Phys. 66, 899 (1994). 

P = 1
Ω

−e ZlRl + rρ(r) dr∫
l
∑

%

&
'

(

)
*



Wannier functions 

•  A set of localized orbitals that span the same 
subspace as the Kohn-Sham eigenvectors 

•  minimize the spread 
•  Wannier centers: centers of charge of each 

Wannier function 
•  Polarization can be expressed in terms of the 

centers 

54 

σ 2 = φ x − φ x φ( )
2
φ

P = 1
Ω

−e ZlRl
l
∑ + e rwn (r) dr∫

n
∑

%

&
'

(

)
*

N. Marzari, A. Mostofi, J. Yates, I. Souza and D. Vanderbilt, Rev. Mod. 
Phys. 84, 1419 (2012). 



Time-dependent polarization of 
nanoparticles 

55 

Cd34Se34 

•  PBE DFT MD 300K 
•  dt=1.9 fs 

12 Debye 



IR Spectroscopy 

•  IR spectra during MD simulations 
•  Autocorrelation function of P(t) 

56 

α ω( ) = 2πω 2β
3cVn ω( )

e−iωt Pµ 0( ) ⋅Pν t( )
µν

∑ dt
−∞

∞

∫



Raman Spectroscopy 

•  Compute the polarizability at each MD step 
–  Use Density Functional Perturbation Theory (Baroni, 

Giannozzi, Testa, 1987) 
–  Use a finite-difference formula with P(t) and finite 

field 

57 



On-the-fly Computation of 
Raman spectra 

Q. Wan, L. Spanu, G. Galli, F. Gygi, JCTC 9, 4124 (2013) 

•  Position of O-D stretching 
band: PBE functional yields a 
red shifted peak, compared 
to expt.  

•  Low frequency bands: 
satisfactory agreement with 
expt. 

•  Peak Intensities in good 
agreement with expt. 

(D2O)64 



Solving the Kohn-Sham equations in a 
finite electric field 

•  In finite systems: add a linear potential 

•  The spectrum is not bounded below (no "ground 
state") 

•  In periodic systems: define the electric 
enthalpy: 

59 

HKS =
p2

2m
+V (r)− eEx

I. Souza, J. Iniguez, D. Vanderbilt, Phys. Rev. Lett. 89, 117602 (2002). 

F φ[ ] = EKS φ[ ]−ΩP φ[ ] ⋅E



Si(100):H-H2O interface 

•  DFT MD of the Si/H2O interface under finite field 
•  Si(100)-(3x3):H-H2O, canted dihydride surface 

termination, 116 water molecules 
•  Analysis of time-dependent polarization 
•  Comparison with IR spectra 

60 

L. Yang, F. Niu, S. Tecklenburg, M. Pander, S. Nayak, A. Erbe, 
S. Wippermann, F. Gygi, G. Galli 



Validation of DFT: PBE vs PBE0 vs … 

•  Oxygen-oxygen pair correlation function in (H2O)32  

PBE (439±29K) 

PBE (367±25K) 

PBE0 (438±29K) 

PBE0 (374±27K) 

Exp (300K) 

C.Zhang, D.Donadio, F.Gygi, G.Galli, JCTC 7, 1443 (2011) 61 



Is my simulation reproducible?  

•  D2O Power spectrum of ionic velocities (32 x 10 ps runs) 

62 
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Validating/comparing levels of 
theory 

•  Need for (quantitative) statistical analysis 
–  compute confidence intervals 

•  An accurate determination of structural and electronic 
properties requires multiple uncorrelated simulations 

•  Autocorrelation times may vary for different quantities 
•  Example: the PBE400 dataset  

–  First-principles MD simulations of water 
–  http://www.quantum-simulation.org/reference/h2o/pbe400  

63 



Summary 

•  Basic features of FPMD 
•  Approximations of electronic structure 

calculations  
•  Extensions: polarization, finite electric 

field 
•  Applications 

64 

Next FPMD steps:  

•  Today 1:45 pm: Qbox tutorial 

•  Tomorrow 1:30 pm: Qbox hands-on exercises  


