
2017 Summer School

Topic: How to Add a New Collective Variable (CV)
Presenter: Michael A. Webb, University of Chicago

http://miccom-center.org

1

How to Add a new CV…

2

Next 20-25 minutes:

Collective variables (CVs) are system descriptors with reduced
complexity compared to the full phase space. They are functions of many
variables that are useful as biasing coordinates and macro-state analysis.

Many CVs already included in SSAGES …but current research often dictates
specific use cases/analysis à more
complex CVs not presently featured

•  Angles
•  Box Volume
•  Gyration Tensor
•  Particle Coordinate

•  Particle Separation
•  Torsions
•  Secondary Structure
•  Rouse Modes

SSAGES makes it very easy to add new
CVs to accomplish your research goals

•  modular (minimal tinkering with code)
•  straightforward (organized structure)
•  efficient (many existing tools)

PHASE 1: ADD ALL THE CVs
PHASE 2: ???

PHASE 3: PROFIT Publish
What you need:

•  literacy and generic programming
•  basics of C++ syntax
•  some familiarity with MPI

Basic Overview

3

This only requires the addition/modification of 3 files!

From within the
SSAGES directory:

A new CV can be added by creating a new class that derives from
the CollectiveVariable base class in SSAGES

./src/CVs/CollectiveVariables.cpp

./src/CVs/CoolThingCV.h (new)

./schema/CVs/coolthing.cv.json (new)

Only need to add 2 lines here to handle “building” of your CV

The bulk of your effort and coding goes here to edit/add member functions
(straightforward to just copy format of existing files)

constructor
checks necessary

variables
computes your CV

value (and gradient!)

CoolThingCV(), Initialize(), Evaluate(), Build(), …

Sets expectations for JSON fields that must be defined for the CV class

builds your CV object
from JSON

4

A new CV can be added by creating a new class that derives from
the CollectiveVariable base class in SSAGES

./src/CVs/CollectiveVariables.cpp

./src/CVs/CoolThingCV.h (new)

./schema/CVs/coolthing.cv.json (new)

Only need to add 2 lines here to handle “building” of your CV

The bulk of your effort and coding goes here to edit/add member functions
(straightforward to just copy format of existing files)

Step 1. Formulate the CV
Step 2. Begin writing CoolThingCV.h
Step 3. Craft your JSON schema

Step 4. Finish writing CoolThingCV.h
Step 5. Make it buildable

Basic Overview

constructor
checks necessary

variables
computes your CV

value (and gradient!)

CoolThingCV(), Initialize(), Evaluate(), Build(), …

builds your CV object
from JSON

Sets expectations for JSON fields that must be defined for the CV class

Example: Polymer Rouse modes

5

•  represent the normal-mode coordinates for a Gaussian chain
•  describe dynamics/relaxation over different lengthscales

Ø  p=0 describes the chain center-of-mass
Ø  p>0 describes sub-chains of (N-1)/p beads

•  characterize chain conformations at those lengthscales

p = 0, . . . ,N� 1

cp =

�
1, if p = 0
2, otherwise

Xp =

�
cp
N

N�

i=1

Ri cos
�pπ
N

�
i � 1

2
��

N
Ri Cartesian vector coordinate of the ith bead in the polymer chain

Number of beads comprising the polymer chain

Xp

p
Vector coordinate of the pth Rouse mode
Rouse mode index

The Rouse modes of a polymer are CVs that involve
the coordinates of all “beads” in the polymer; they …

N = 10, p = 1 decreasing mode magnitude

1, R1
2, R2

3, R3

··
·

N, RN
N-1

n, Rn

n+1

n-1

· · ·

Step 1. Formulate the CV

6

How will it be calculated? (must be a scalar)

How will the gradient (for particle positions) be calculated?

What information will be needed?

1, R1
2, R2

3, R3

··
·

N, RN
N-1

n, Rn

n+1

n-1

· · ·

Xp =

�
cp
N

N�

i=1

Ri cos
�pπ
N

�
i � 1

2
��What are the probable use cases?

Atomistic or coarse-grained polymer/macromolecule simulations
Different modes and discretization levels

We will compute the CV as the Euclidean norm of the Rouse
mode coordinate: CV =

�
Xp · Xp

Bead coordinates will be the center-of-mass of a group of particles:

Ri =
1
Mi

�

j�Gi

mjrj Gi = {id1, id2, · · · , idNi}

�rjCV =
Xp

CV

�
cp
N

N�

i=1

cos
�pπ
N

�
i� 1

2
��mj

Mi
δj(Gi)

By chain rule, the gradient with respect to the position of the jth particle:

1 if j is in the group
0 otherwise

•  mode index
•  Particle positions/massesà bead position/mass
•  atom indices comprising the particle groups

•  number of “beads”
Note: You can assume that all typical
simulation info (particle positions, velocities,
masses, etc.) is exposed within SSAGES
through “Snapshot” (more on this later)

…

Step 2. Begin writing CoolThingCV.h

7

CoolThingCV.h defines your CV class and it is derived from
CollectiveVariable

./src/CVs/CollectiveVariable.h

Base Class Snippet:

The calculation of these protected
variables in YOUR CoolThingCV.h

makes the CV unique

private class variable
names indicated by a

trailing ‘_’

some variable types are pre-defined for
convenience, i.e., Vector3 in place of
Eigen::Vector3d or Label in place of

std::vector<int>

8

To write CoolThingCV.h, we need to
craft four main member functions; we

will start with the first three
./src/CVs/MockCV.h

private variable
& function space

public variable &
function space

1. the constructor--called
when the CV is setup

2. Initialize() – called at
beginning of simulation

In Evaluate(), we need to compute
val_ and grad_; everything else is

mostly bookkeeping

a.  Shamelessly copy the code for an existing
CV with similar features

b.  Make all your private variable declarations
(that you can initially think of)

c.  Write the constructor
d.  Write Initialize()
e.  Write Evaluate()
f.  Patch up needed variables/functions
g.  Write Build()

My suggested workflow:

Step 2. Begin writing CoolThingCV.h

3. Evaluate() – called at
every simulation timestep

9

For RouseModeCV.h, we’ll start with looking at ParticleSeparationCV.h

…

We will basically keep all
this stuff to begin with

This structure is good, we just
need to change the variable

names/comments

This CV uses a group, we can make this
a vector instead for our specific case. A
few more variables will be needed…

Two constructors are
shown here; we’ll stick

with one

ParticleSeparationCV.h

Step 2. Begin writing CoolThingCV.h

10

a. Shamelessly copy
the code for an existing
CV with similar features

b. Make all your
private variable
declarations

c. Write the
constructor

ParticleSeparationCV.h

RouseModeCV.h

What do we need to compute val_ and grad_?

Should assume what information gets
passed to the constructor here

Step 2. Begin writing CoolThingCV.h

11

Initialization appears to mostly be
checking for consistency between

variables from simulation and
user-supplied parameters

We should set up the
same, tailored for the

RouseModeCV

d. Write Initialize()
This looks good

This checks groups1 and 2;
we should change to check

the vector of groups

We should add
checks on the
mode index

ParticleSeparationCV.h

RouseModeCV.h

We’ll add a placeholder for
initializing the masses of the groups

Step 2. Begin writing CoolThingCV.h

12

e. Write Evaluate()

ParticleSeparationCV.h

Note: Most of Evaluate() changes, BUT you can
learn a lot about the SSAGES snapshot functionality by
looking at the various .h files. Otherwise, take a look
at ./src/Snapshot.h or the API reference to see
all the member variable/functions.

Available information in Evaluate() is
determined during construction/initialization

or provided through snapshot

✓indices for a
group of particles

✓masses for particles

✓mass of a group
✓center-of-mass

✓MIC
✓ vector norm

RouseModeCV.h

Step 2. Begin writing CoolThingCV.h

13

f. Patch up needed
variables/functions

Earlier, we assumed a function that
would determine the masses of the
“beads.” Now is the time to actually

make sure these functions exist!

RouseModeCV.h

Step 2. Begin writing CoolThingCV.h

Step 3. Craft the JSON Schema

14

A file specifying the JSON schema must be created in ./schema/CVs/

particleseparation.CV.json

rousemode.cv.json

Copy and modify
existing schema

according to desired
functionality

This file acts as pre-filter that sets the conditions for variables in your programming environment

15

Step 4. Finish up CoolThingCV.h
Knowing the set up of the JSON, we need to finish up CoolThingCV.h

g. Write Build()

particleseparation.cv.json

ParticleSeparationCV.h

This looks fairly
generic—will
mostly copy

This is specific to the
JSON, so we can match

it to our own needs

16

RouseModeCV.h

rousemode.cv.json

g. Write Build()

Step 4. Finish up CoolThingCV.h
Knowing the set up of the JSON, we need to finish up CoolThingCV.h

17

Step 5. Make it buildable
Finally, we must ensure that the CV can be built in CollectiveVariables.cpp!

CollectiveVariable.cpp

These conditional statements
handle the building of each

CV; just add one!

Summary

18

A new CV can be added by
creating a new class that

derives from the
CollectiveVariable base

class in SSAGES

Step 1. Formulate the CV
--pen and paper portion
--how will it be used?/what is needed?

Step 2. Begin writing CoolThingCV.h
--must add a file for this!
--bulk of the effort goes here
--easiest to start with an existing CV

Step 3. Craft your JSON schema
--must add coolthing.cv.json
--easy based on previous steps

Step 4. Finish writing CoolThingCV.h
--easy now based on Step 3

Step 5. Make it buildable
--just edit CollectiveVariable.cpp
--very trivial modifications

PHASE 1: ADD ALL THE CVs
PHASE 2: ???

PHASE 3: PROFIT Publish

Expanding on Phase I

Step 6. Add a unit test
-good practice & self-contained
check that all is well
-See ./test/unit_tests
for examples

